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NONSTATIONARY GAS FILTRATION CAUSED

BY AN INTENSE THERMAL ACTION

ON A DAMP POROUS MEDIUM

UDC 532.546A. M. Vorob’ev,1 K. N. Egorov,2 D. V. Eliseev,1

V. V. Kozlov,2 and D. V. Sadin2

A mathematical model and an algorithm are proposed for evaluating nonstationary heat and
mass transfer in a porous medium that contains a mechanically absorbed liquid and a two-
component gas (vapor–inert gas mixture). The case of an intense thermal action on a damp
porous mixture caused by an external heat flux and convective heat transfer is considered. Typ-
ical flow regions and typical regions of the interaction between the phases are described.

1. Physical Model. We consider a damp porous medium with a structure shown in Fig. 1a. Each
capillary consists of a chain of pores 1, which vary both in size and geometry, with slits (tubes) 2 of a much
smaller cross-sectional area in between. The capillary contains mechanically absorbed water 3 and a vapor–
inert gas mixture. The porous medium is bounded by a rigid impermeable wall with a heat flux Q suddenly
added to the latter.

As the medium becomes more and more heated, the temperatures of all phases (solid “sponge,” water,
and gas) change, and phase transformations occur at the water–vapor interface. Variation of thermodynamic
characteristics of the gas gives rise to a capillary flow (filtration) of the gas (and, in the general case, of the
absorbed water) due to the pressure difference.

Gas filtration in a porous medium is determined by a force interaction between the gas and the solid
“sponge.” For the type of a porous medium under consideration, in which the pores are connected by relatively
narrow slits, a substantial factor is the buoyancy force caused by the pressure gradient [1]:

FA = −α1∇p(1− ε2) (ε� 1). (1)

Here α1 is the porosity of the medium (ratio of the volume occupied by the gas to the total volume of the
medium), p is the pressure, and ε is the ratio of the total cross-sectional area of the narrowest parts of slits at
their exit from pores projected onto a given plane to the “free” area of this plane [1].

The forces of hydrodynamic friction caused by shear stress at the “sponge” surface can be represented
in the form

F µ =
α2

1µv

χ
, (2)

where µ is the dynamic viscosity of the gas, v is the velocity of the gas flow, and χ is a quantity having the
dimension of area. If the porosity of the medium is spatially nonuniform, the force −p∇α1 should also be
taken into account because of the stream-tube expansion.
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Fig. 1

For the conditions of interest, the gas flow through the porous medium has a wave character [2], i.e.,
the disturbances propagate with a finite velocity aε (a is the velocity of sound in the gas contained in the
pores).

In the problem considered, the source of disturbances is an external pulsed thermal action exerted on
the porous medium. In contrast [1, 2], we take into account both heat and mass transfer between the phases.
Filtration processes are determined by the distribution of microparameters inside the pores. To simplify the
problem, one should schematize both the medium structure (Fig. 1b) and the model of microprocesses. Follow-
ing [3], instead of the temperature field in a pore, we use three characteristic temperatures: the temperature
of the gas phase T1, the temperature at the liquid–gas interface Ts, and the temperature of the solid “sponge”
T3. The heat flux at the interface is specified by the Nusselt number, whereas the heat flux through the liquid
film is determined by its thickness δ.

We assume that the gas phase consists of two components, an inert gas, which suffers no phase transi-
tions, and a vapor. We also assume that no chemical reactions proceed between these components, and these
components are calorically perfect gases with temperature-dependent thermal conductivities and additive
thermophysical parameters.

Next, we assume that the pore diameters are many times greater than the characteristic molecular-
kinetic lengths and many times smaller than the distances over which macroscopic characteristics vary appre-
ciably. The pores are assumed to be spheres of identical diameters. The viscosity and thermal conductivity
of the gas contained in the pores only affect the interaction between the phases. The gravity force is ignored.

2. Mathematical Model. Under the assumptions adopted, the heat and mass transfer in a damp
porous medium is described by the following equations of conservation for the mass, momentum and energy
of the phases:

∂ρg

∂t
+∇ · ρgv = 0,

∂ρv

∂t
+∇ · ρvv = −J12,

dr1

dt
= − J12r1

3α1ρ0
2s

,
dα1

dt
= −J12

ρ0
2s

,

ρ1
d1v

dt
= −∇pα1 − F + J12v,

d1

dt
≡ ∂

∂t
+ v · ∇,

(3)
∂ρ1E1

∂t
+∇ · ρ1E1v +∇ · α1pv + p

∂α1

∂t
= Qs1 − J12iv,s,

∂T3

∂t
= a2

T∆T3 +
Qs3

ρ3c3
, a2

T =
λ3

ρ3c3
, ρi = ρ0

iαi,
3∑
i=1

αi = 1, E1 = u1 +
|v|2

2
, i = 1, 2, 3.

Here the subscripts 1, 2, and 3 refer to the gas, liquid, and solid phases, respectively; the subscripts “g” and
“v” refer to the inert gas and the vapor component, respectively, and the subscript “s” refers to the surface
phase (Σ-phase); ∇ and ∆ are the Hamilton and Laplace operators, ρi and ρ0

i are the reduced and true
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densities, respectively, αi is the volume fraction of the ith phase, E1 and ui are the specific (per unit mass)
total energy of the gas and the internal energy of the ith phase, respectively, iv,s is the enthalpy of the vapor,
which undergoes a phase transition at the interface between the phases, r1 is the radius of a pore filled by
the gas, J12, F , and Qs,i are, respectively, the rate of the phase transformation, the intensity of interaction
between the phases, and the rate of heat transfer between the Σ-phase and the ith phase; aT , λ3, and c3 are
the thermal diffusivity, thermal conductivity, and heat capacity of the solid material, respectively.

Substituting the volume force acting between the phases [according to (1) and (2), F = FA+F µ−p∇α1]
into the momentum equation for the gas phase (3) and re-writing the latter equation in a divergent form, we
obtain

∂ρ1v

∂t
+∇ρ1vv + α1ε

2∇p = −α
2
1µ1v

χ
.

We calculate now the rate of heat and mass transfer between the phases using an equilibrium interface
scheme [3]:

J12l(pv) = Qs1 +Qs3, Qs1 = 1.5
α1

r2
1

Nu1λ1(Ts − T1),

p2 = p− 2σ
r1
, p = pg + pv, Qs3 = 12λ2

α1r2

πr2
1δ

(Ts − T3).

Here Ts is the mean temperature at the liquid-phase surface, which is equal to the saturation temperature,
l(pv) is the heat of evaporation, p2 is the pressure in the liquid phase, σ is the surface tension, r2 is the radius
of a pore filled by the gas and the liquid, δ is the thickness of the liquid film at the pore walls, λi is the thermal
conductivity of the ith phase, and Nu1 is the Nusselt number (Nu1 = 10 being its quasistationary value for
the internal heat-transfer problem).

System (3) of conservation equations is closed by the following equations of state for the calorically
perfect gas components:

pg = ρ0
gRgT1, pv = ρ0

vRvT1, ρ = ρg + ρv,

kg =
ρg

ρ1
, kv =

ρv

ρ1
(kg + kv = 1), u1 = kgug + kvuv, λ1 = λ1(kg, T1),

ig = cg(T1 − T ∗) + i∗g, iv = cv(T1 − T ∗) + i∗v.

Here pg, pv and Rg and Rv are the partial pressures and universal gas constants, respectively, ρ0
g and ρ0

v, kg and
kv, and ug and uv are, respectively, the true densities, concentrations, and internal energies of the components
(per unit mass), cg and cv are, respectively, the heat capacities of the inert gas and the vapor at constant
pressure, and ig is the enthalpy of the gas component; the superscript “ ∗ ” denotes fixed parameters. The
enthalpy of the vapor component iv is related to the enthalpy of the condensed phase iliq by the normalization
condition

i∗v − i∗liq = l(p∗v) + (cliq − cv)(Ts(p∗v)− T ∗),

where cliq is the heat capacity of the liquid.
3. Calculation Procedure. The difference scheme for calculating nonstationary heat and mass

transfer in a damp porous medium is constructed using splitting by physical processes in three stages. At the
first stage, the heat-conduction equation is integrated by the sweep method [4]:

∂T I
3

∂t
= a2

T∆T I
3. (4)

At the second and third stages, the procedure follows the method of [5], in which interactions between the
phases are taken into account implicitly at the Eulerian stage:

∂ρII
g

∂t
= 0,

∂ρII
v

∂t
= −J12,

drII
1

dt
= − J12r1

3α1ρ0
2s

,
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Fig. 2 Fig. 3

dαII
1

dt
= −J12

ρ0
2s

, ρ1
∂vII

∂t
+ α1ε

2∇p = −α
2
1µ1v

II

χ
, (5)

ρ1
∂EII

1

∂t
+∇ · α1pv = QII

s1 − J12iv,s,
∂T II

3

∂t
=

QII
s3

ρ3c3
;

∂ρIII
g

∂t
+∇ · ρgv

II = 0,
∂ρIII

v

∂t
+∇ · ρvv

II = 0,
∂(ρ1v)III

∂t
+∇(ρ1vv)II = 0,

∂(ρ1E1)III

∂t
+∇ · (ρ1E1v)II + p

∂αII
1

∂t
= 0,

(6)

rIII
1 = rII

1 , αIII
1 = αII

1 , T III
3 = T II

3 , pIII
g = ρIII

g Rg(EIII
1 − (vIII)2/2),

pIII
v = ρIII

v Rv(EIII
1 − (vIII)2/2), pIII = pIII

g + pIII
v .

In (4)–(6), the superscripts designate stage numbers. Difference approximation is performed as in [5]. The
scheme described above is a marching one, the time step τ should be chosen here from the Courant–Friedrichs–
Lévy condition, which involves the ratio of the mesh step to the propagation velocity of weak disturbances aε.

4. Initial Data. We consider a damp porous medium of thickness H bounded by impermeable walls.
At the moment t = 0, the left wall experiences a pulsed thermal action of duration Θ caused by an external
heat flux Q and convective heat transfer.

The problem is considered in a one-dimensional statement with the following initial parameters: H =
0.01 m, Q = 600 W/m2, temperature of the right wall Tright = 293 K, temperature of the left wall Tleft =
1073 K, initial volume fraction of the gas α10 = 0.2, initial volume fraction of water α20 = 0.1, λ3 =
1.7 W/(m·K), c3 = 500 J/(kg·K), ρ3 = 4000 kg/m3, ε = 10−3, χ = 10−8 m2, γg = 1.4, heat-transfer coefficient
α = 300 W/(m2 ·K), Rg = 287 J/(kg ·K), Θ = 5 sec, λg = 0.025 W/(m ·K), and µg = 1.85 · 10−5 Pa · sec.

To determine the thermophysical parameters of water and vapor, the tabulated data reported in [6]
were used. All the fixed parameters of vapor for T ∗1 = 373 K were borrowed from the tables of [6].

The following conditions were adopted for the initial moment: T1 = Ts = T3 = 293 K, p = 105 Pa,
and v = 0. The partial pressures pg and pv can be found from the condition of phase equilibrium at t = 0.
Both walls were assumed to be impermeable. The conditions for heat transfer at the left and right walls were
Q− α(T3 − Tleft) = −λ3 ∂T3/∂R and λ3 ∂T3/∂R = α(T3 − Tright), respectively.

5. Some Results. As a result of the intense thermal action exerted on the left wall, the temperature
of the “sponge” increases, and the water contained in it starts evaporating as its temperature rises. The
pressure and temperature of the gas phase increase as well, which gives rise to its filtration. Figure 2 shows

282



the distributions of the above-indicated parameters across the porous medium for t = 5 sec (curves 1 and 2
refer to the gas pressure and gas temperature, respectively). As is shown in Fig. 3 (t = 5 sec), the densities
of the gas-phase components (curves 1 and 2 refer to air and vapor, respectively), which are spatially uniform
and equilibrium at the initial moment, change in time. Near the left wall, an intense phase transition increases
the vapor concentration, and the gas-phase filtration leads to some redistribution of the inert component (air).
After complete evaporation of water, the porosity (curve 3 in Fig. 3) reaches its highest value α10 +α20 = 0.3
and remains unchanged afterwards. Owing to heat transfer between the solid phase and the gas, the gas
temperature increases (see curve 2 in Fig. 2), and the vapor density decreases as a result of filtration.

Thus, the following typical regions can be distinguished in the profiles of parameters across the porous
medium. In a vicinity of the left wall, water totally evaporates, and the highest temperature is observed here.
The next zone is the water–vapor transition region [the inflection in the curve T (x) (see Fig. 2)], in which
the vapor concentration is maximum (see Fig. 3). The vapor transport to regions with lower temperatures
results in condensation of water and a decrease in the porosity of the medium (see Fig. 3). Finally, as the
x coordinate increases, the temperature approaches its initial value, the rise in pressure near the right wall
being due to the increase in the air density. The spatial redistribution of air is caused by mass transfer.
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